This topic explains how to boot Digi Embedded Yocto images without updating the firmware on the internal NAND. This is helpful during the development phase, as it preserves the original firmware on the SOM.
Open a serial connection
You must open a serial connection to communicate with your device.
-
Open a serial connection using any terminal program such as Tera Term, Minicom, Coolterm, or HyperTerminal. This documentation demonstrates using Minicom to work with the device command line.
Use the following settings:
Parameter Value Port
Serial port where the device is connected
Baud rate
115200
Data bits
8
Parity
None
Stop bits
1
Flow control
None
-
Reset the device by pressing the reset button on the board. Then immediately press any key in the serial terminal to stop the auto-boot process. The U-Boot bootloader prompt displays:
NOTICE: CPU: STM32MP135F Rev.Z NOTICE: Model: Digi International ConnectCore MP13 Development Kit NOTICE: BL2: v2.6-stm32mp1-r2.1(release):dub-2021.10-r4.2(8fdd4435) NOTICE: BL2: Built : 14:43:31, Sep 14 2023 NOTICE: BL2: Booting BL32 optee optee: OP-TEE: revision 3.16 (43350dda) U-Boot dub-2021.10-r4.2 (Sep 14 2023 - 14:42:17 +0000) CPU: STM32MP135F Rev.Z DRAM: 256 MiB optee optee: OP-TEE: revision 3.16 (43350dda) Clocks: - MPU : 650 MHz - AXI : 266.500 MHz - PER : 24 MHz - DDR : 533 MHz WDT: Started with servicing (32s timeout) NAND: 256 MiB MMC: STM32 SD/MMC: 1 In: serial Out: serial Err: serial Model: Digi International ConnectCore MP13 Development Kit ConnectCore MP13 SOM variant 0x01: 256 MiB DDR3, Wi-Fi, Bluetooth Board version 2 Boot: NAND Net: eth0: eth1@5800a000Get shared mii bus on eth2@5800e000 , eth1: eth2@5800e000 Normal Boot Hit any key to stop autoboot: 0 =>
Boot the system from network
This shows how to transfer the images to the target via TFTP or NFS, and mount an NFS root file system.
This requires that you set up your PC workstation as explained in Set up native Linux PC. |
1. Prepare the device artifacts
-
Get the Digi Embedded Yocto firmware images to boot from network:
-
The kernel file:
zImage
. -
The device tree:
ccmp133-dvk.dtb
. -
Any device tree overlays files that apply to your hardware:
<device-tree-overlay-file>.dtbo
(see Pre-compiled device tree overlays). -
The compressed root file system:
<rootfs-file>.rootfs.tar.bz2
.
-
After building the Digi Embedded Yocto firmware, you can find the image files inside the project directory at:
<project_folder>/tmp/deploy/images/ccmp13-dvk
-
You can download Digi provided pre-built images from:
-
For ConnectCore MP13 Development Kit: Non-graphical images
-
-
-
Untar the root file system tarball (
*.rootfs.tar.bz2
) in the NFS exported directory of your development workstation. See Set up native Linux PC.$ sudo tar xvfp image.rootfs.tar.bz2 -C /exports/nfsroot-ccmp13_dvk
-
Copy the kernel
*.bin
file to the TFTP exported directory of your development workstation.$ sudo cp <kernel-file>.bin /tftpboot
-
Copy the device tree
*.dtb
file to the TFTP exported directory of your development workstation.$ sudo cp <device-tree-file>.dtb /tftpboot
-
(Optional) Copy any device tree overlay
*.dtbo
files that apply to your variant to the TFTP exported directory of your development workstation.$ sudo cp <device-tree-overlay-file>.dtbo /tftpboot
2. Configure your device’s network settings
-
Get a dynamic IP for your target:
=> setenv autoload no => dhcp
or you can set a static IP:
=> setenv ipaddr 192.168.115.222
-
Configure the IP of the development workstation with TFTP and NFS servers installed. See Set up native Linux PC:
=> setenv serverip 192.168.115.1
3. Boot from network
Boot from TFTP+NFS
-
Set the directory with the rootfs to mount. This directory is the one exported via NFS in your development workstation. See Set up an NFS server.
=> setenv rootpath /exports/nfsroot-ccmp13_dvk
-
Specify the device tree (
*.dtb
) file name. This is the name of the*.dtb
file you copied to the TFTP exported directory of your development workstation.=> setenv fdt_file <device-tree-file>.dtb
-
(Optional) Use a comma-separated list to specify the device tree overlay (
*.dtbo
) files you want to apply. These are the names of the*.dtbo
files you copied to the TFTP exported directory of your development workstation.=> setenv overlays <overlay1>.dtbo,<overlay2>.dtbo
-
Establish the kernel file (
*.bin
) name. This is the name of the*.bin
file you copied to the TFTP exported directory of your development workstation.=> setenv zimage <kernel-file>.bin
-
Save the changes.
=> saveenv
-
Boot from TFTP.
=> dboot linux tftp
You can make these changes persistent by writing the following command:
=> setenv bootcmd 'dboot linux tftp' => saveenv
The target now loads the kernel and device tree from the TFTP server and the root file system from the NFS server.
Boot entirely from NFS
To avoid using TFTP for kernel and device tree files and boot everything from NFS, copy the kernel *.bin
and device tree *.dtb
files to the NFS-exported directory of your development workstation (instead of to the TFTP directory).
See Set up an NFS server.
=> dboot linux nfs
Boot from microSD card
U-Boot can start a complete Digi Embedded Yocto system from a microSD card. To boot a system from a microSD card, follow these steps:
1. Create a bootable microSD card from a Digi Embedded Yocto image
Refer to Boot from microSD card for instructions on creating a bootable microSD card.
2. Boot Digi Embedded Yocto from the microSD card
-
Power off the device.
-
Insert the microSD card into the microSD card holder (bottom side of the board).
-
Change the boot source configuration to boot from the microSD card. To do so, set the boot mode micro-switches as follows:
-
BOOT.1
: ON -
BOOT.2
: OFF -
BOOT.3
: ON -
BOOT.4
: n/a
-
-
Power on the device. Digi Embedded Yocto boots from the microSD card.