
Wireless Vehicle Bus Adapter (WVA)

Android Library Tutorial

Revision history—90001431-13

Revision Date Description

A October 2014 Original release.

B October 2017 n Rebranded the document.

n Edited the document.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2017 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:
www.digi.com/howtobuy/terms

Send comments
Documentation feedback: To provide feedback on this document, send your comments to
techcomm@digi.com.

Customer support
Digi Technical Support: Digi offers multiple technical support plans and service packages to help our
customers get the most out of their Digi product. For information on Technical Support plans and
pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.

WVA Android Library Tutorial 2

http://www.digi.com/howtobuy/terms
mailto:techcomm@digi.com
http://www.digi.com/support

Contents

WVA Android Library Tutorial
What is the WVA library? 5
Options for using this tutorial and library 5

Getting started
Install tools and import the WVA tutorial 6

Step 1: Install Java and Git 6
Step 2: Install Android Studio 6
Step 3: Get the WVA tutorial repository 6
Step 4: Import the WVA tutorial into Android Studio 7

Step 1: Build a shell Android Project with the WVA library
Create the Android project 8
Add the WVA library dependency 10
Create resources for use in your application 11
Add code to connect to the WVA 12

Discover devices using ADDP 15
Build and run the application 16

Where can I find the completed source? 17

Step 2: Synchronize time to the WVA
Where do I begin? 18
Add UI elements 18
Create the button behavior 19
Build and run the application 20

Where can I find the completed source? 20

Step 3: Read vehicle data from the WVA
Where do I begin? 21
Add UI elements 21
Create button behavior 22
Build and run the application 23

Where can I find the completed source? 24

WVA Android Library Tutorial 3

WVA Android Library Tutorial 4

Step 4: Configure the WVA
Where do I begin? 25
Add UI elements 25
Create button behavior 26
Build and run the application 29

Where can I find the completed source? 30

Step 5: Subscribe to vehicle data on the WVA
Where do I begin? 31
Add UI elements 31
Create button behavior 33
Build and run the application 35

Where can I find the completed source? 36

Step 6: Create an alarm on vehicle data
Where do I begin? 37
Add UI elements 37
Create the alarm and handle alarm data 37
Build and run the application 39

Where can I find the completed source? 40

WVA Android Library Tutorial

This tutorial introduces the Wireless Vehicle Bus Adapter (WVA) Android library and has examples of
how to use the WVA Android library APIs to create an Android application for the WVA.
In the examples, you will learn how to read vehicle data using direct web-services and by configuring
the event channel of the WVA. You can configure the event channel to asynchronously report events
using the Subscription and Alarm WVA features. You will also learn how to programmatically access
and change the configuration variables of the WVA and keep its time synchronized to your Android
device.

What is the WVA library?
Digi has a Java-based library for Android devices that provides an API for accessing the web services of
a WVA without needing to directly manage HTTP details. This library has been made open-source
under the Mozilla Public Library (2.0) and is hosted on Github.

Options for using this tutorial and library
You can follow one of these methods to use this tutorial and the WVA Android library:

1. Follow the instructions from the beginning and develop the application with the aid of these
instructions.

2. For the steps that interest you most, check out the branch for each step from the Git
repository.

n Each step in the tutorial has had a branch created that you can use as a base to check
out and develop code.

n If you follow this approach, make sure you follow the steps in the Getting Started
section to confirm that you have the appropriate tools.

n Using Git for source code version control is optional. You can simply follow the steps of
this tutorial without cloning code from Git.

WVA Android Library Tutorial 5

https://github.com/digidotcom/wvalib_tutorial

Getting started

Before you can use the the Wireless Vehicle Bus Adapter (WVA) Android library, you must install several
tools and set up access to the tutorial. When setup is complete, you can build an Android project and
work through the tutorial.

n Install tools and import the WVA tutorial.

n When you have completed the setup tasks, you are ready to begin the WVA Library Tutorial with
Step 1: Build a shell Android Project with the WVA library.

Install tools and import the WVA tutorial
This section describes how to install the required tools, and set up and import the tutorial.

Step 1: Install Java and Git
Your computer will need the following tools installed or adjusted:

n A Java Development Kit (JDK) available here. The Java Android Studio issues a warning if a
JDK is not installed.

n Git, available here.

Step 2: Install Android Studio
This tutorial uses Android Studio to develop the sample application. If you do not already have Android
Studio installed, please go to the Android Developer site and follow the directions to install it. Also,
ensure that you have installed at least one SDK matching the Android platform you wish to target.
You should install the latest version of Android Studio, even if that version is a beta release.
If you are new to Android Studio, you should review the Android build tools documentation.
Before you begin creating the application project and learning more about the WVA Library, verify that
you can successfully run Android Studio without error.

Step 3: Get the WVA tutorial repository
Using Git, clone the repository https://github.com/digidotcom/wvalib_tutorial. This is optional, but
allows you to refer to each step compared to what you have created or to begin directly at a
particular example.

WVA Android Library Tutorial 6

https://www.oracle.com/java/index.html
http://git-scm.com/
http://developer.android.com/index.html
http://tools.android.com/tech-docs/new-build-system
https://github.com/digidotcom/wvalib_tutorial

Getting started Install tools and import the WVA tutorial

WVA Android Library Tutorial 7

Step 4: Import the WVA tutorial into Android Studio
To import the tutorial into Android Studio, use the Import Project option on either the quick-start
page of the Android Studio or under the File menu, and select the cloned repository’s root directory.
By default this is wvalib_tutorial. Note that the name may be different if you cloned it to a different
directory or have renamed it.
Depending on your device screen size, some text may be cut off. You can adjust the dimensions in the
XML layout additions, specifically margin values, to fit the screen of the Android device being used.
The library configures the event channel of the WVA for JSON-formatted data. The format of the event
channel follows the web services requests being made. Making requests for XML data independent of
the library disrupts the library’s operation.

Step 1: Build a shell Android Project with the WVA
library

This section shows you how to create a new application using the WVA library. It assumes you have
completed all the requirements of the Getting started section.
Follow the steps below to complete the process:

1. Create the Android project

2. Add the WVA library dependency

3. Create resources for use in your application

4. Add code to connect to the WVA

5. Build and run the application

Create the Android project
1. Open Android Studio.

2. From the quick start select New Project.

a. For the Application name enter WVA Sample.

b. For Company Domain enter wva.example.com.

c. The Project location provides a default or you may change this as desired.

d. Click Next.

WVA Android Library Tutorial 8

Step 1: Build a shell Android Project with the WVA library Create the Android project

WVA Android Library Tutorial 9

3. On the Select the form factors your app will run on screen, leave the default option
selected: Phone and Tablet.

4. Click Next. The Add an activity to Mobile screen appears.

5. Select Blank Activity.

Step 1: Build a shell Android Project with the WVA library Add the WVA library dependency

WVA Android Library Tutorial 10

6. Click Next. The Choose options for your new file screen appears.

7. Change Activity Name: toWVAActivity. This changes the Layout Name and Title to activity_
wva andWVAActivity, respectively.

8. Click Finish.

9. Your project is now created. See Add the WVA library dependency for the next step in this
process.

Add the WVA library dependency
This step explains how to add the WVA library from the JCenter central repository.

1. In your Project view tree, openWVASample > app > build.gradle:

Step 1: Build a shell Android Project with the WVA library Create resources for use in your application

WVA Android Library Tutorial 11

2. You will need to synchronize your Gradle files in Android Studio (from the menu bar Tools >
Android > Sync Project with Gradle Files) to pull the library from the Jcenter repository. In
the dependencies section of this build.gradle, add the following line of code to add the WVA
library to your project:

compile "com.digi.wva:wvalib:2.0+"

3. Create resources for use in your application.

Create resources for use in your application
This step explains how to create resources for use in your application.

1. Create some string resources to report the connection status to your WVA. In the Project View
tree, navigate to and open app > src > main > res > values > strings.xml, and add the
following string resource tags:

<string name="wva_connect_unknown">Waiting to connect.</string>

<string name="wva_connect_ok">WVA connection established!</string>

<string name="wva_connect_error">Cannot connect to WVA!</string>

Step 1: Build a shell Android Project with the WVA library Add code to connect to the WVA

WVA Android Library Tutorial 12

2. Create a layout resource to display the text. In the Project View tree, navigate to and open app
> src > main > res > layout > activity_wva.xml, remove the existing TextView resource from
the layout, and then replace it with the following:

<TextView

android:id="@+id/connection_status_text"

android:text="@string/wva_connect_unknown"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

3. Next, Add code to connect to the WVA.

Add code to connect to the WVA
This step explains how to add the code needed to connect to the WVA. Since the WVA connection
needs to persist beyond the Android activity life cycle, you need to put the code in an Application class.

Note You need to add the appropriate import statements for the symbols used in the code. The IDE
can do this for you automatically. When you enter code, click on the incorrect symbol, press
<ALT>+<ENTER>, and choose to allow the IDE to include the necessary imports. You can also do this
for multiple symbols at once with the Code>Optimize Imports…menu item.

1. In the Project View tree, expand
WVASample>app>src>main>java>com.example.wva.wvasample.

2. Right click com.example.wva.wvasample and select New>Java Class from the pop-upmenu
to add a new Java class.

3. Name the new class WVAApplication. This class needs to extend from the Android Application
class in order to create a context for the application’s life cycle for networking code.

4. Click OK. In the source view, place the cursor after the class and type:

extends Application

5. Define two private data members:wva of type WVA andwva_ip of type String.

6. Initialize the wva_ip string with the IP address of your Wireless Vehicle Bus Adapter. If you do
not know your WVA’s IP address, see Discover devices using ADDP for information on
performing a device discovery.

7. Create a public getter method for the wva object by right clicking on the wvamember that you
just created, selecting Generate… and clicking the Getter option.

8. Override the method onCreate. You can right click on Application and select
Generate>Override Methods... to create the skeleton body for onCreate.

9. In the onCreate method, add the code shown to initialize the WVA object. To configure the
code, you can use basic authentication with the useBasicAuth method. Use the username and
password of your device.

Step 1: Build a shell Android Project with the WVA library Add code to connect to the WVA

WVA Android Library Tutorial 13

10. Configure the WVA object by using HTTPS with the useSecureHttp method. The following code
shows what your class should look like after you are done:

public class WVAApplication extends Application {

private String wva_ip = "w.x.y.z";

private WVA wva;

public WVA getWVA() {

return wva;

}

@Override

public void onCreate() {

super.onCreate();

wva = new WVA(wva_ip);

wva.useBasicAuth("admin","admin").useSecureHttp(true);

}

}

11. Make sure your AndroidManifest.xml refers to this new application class, and give your app
permission to access the networking code. In the Project view tree, navigate to
WVASample>app>src>main>res>AndroidManifest.xml and add the following attribute to the
<application> tag:

android:name=".WVAApplication"

12. Just above the <application> tag, add the following tag to enable networking permissions:

<uses-permission android:name="android.permission.INTERNET" />

13. Add some code to the WVAActivity class you created earlier when you created the project.
Open the class WVAActivity in the IDE, and add the following code to the onCreate method:

a. Add the following variable declaration. This declaration creates a reference
to our customWVAApplication object:

final WVAApplication wvaapp = (WVAApplication)

getApplication();

Step 1: Build a shell Android Project with the WVA library Add code to connect to the WVA

WVA Android Library Tutorial 14

b. Add a variable to reference the TextView to update the connection status in
the display. Note that this refers to the resource connection_status_text
you created earlier.

final TextView t = (TextView) findViewById(R.id.connection_

status_text);

c. At the end of onCreate, call the method isWVA to test if the WVA is
connected to the same IP network as your Android device. The method
expects a callback and so define it as an anonymous inline class by creating
a callback object as follows. Note the callback object requires a single
method onResponse(Throwable, Boolean) to be defined. This code adds
the logic to display different text resources depending on the status of the
connection to the WVA as passed in by the variable success.

wvaapp.getWVA().isWVA(new WvaCallback<Boolean>() {

@Override

public void onResponse(Throwable error, Boolean success)

{

if(error != null) {

error.printStackTrace();

}

else {

if (success) {

t.setText(R.string.wva_connect_ok);

}

else {

t.setText(R.string.wva_connect_error);

}

}

}

});

The code for the onCreate method should look like this example:

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_wva);
// Check that we are talking to a WVA
final WVAApplication wvaapp = (WVAApplication) getApplication();

final TextView t;

t = (TextView) findViewById(R.id.connection_status_text);

Step 1: Build a shell Android Project with the WVA library Add code to connect to the WVA

WVA Android Library Tutorial 15

wvaapp.getWVA().isWVA(new WvaCallback<Boolean>() {
@Override
public void onResponse(Throwable error, Boolean success) {

if (error != null) {
error.printStackTrace();

}
else {

if (success) {
t.setText(R.string.wva_connect_ok);

}
else {

t.setText(R.string.wva_connect_error);
}

}
}

});

}

14. See Build and run the application for the next step.

Discover devices using ADDP
You may need to use the Digi-proprietary protocol ADDP (Advanced Device Discovery Protocol) to
discover your WVA to determine its IP address. Android applications can also use ADDP to discover
WVA devices on your network. This section explains how to use Digi’s ADDP library to perform
discoveries.

Using ADDP from your computer
1. Using ADDP requires a Java JDK to be installed on your computer. Make sure your JDK was to

your computer's PATH by opening a command prompt and entering the following:

java -version

2. Download the ADDP library .jar file, using this direct link: download ADDP JAR file.

3. Optional: Rename the ADDP library .jar file to AddpLibrary.jar for convenience. While this step
is optional, the rest of the steps in this procedure refer to the file by this name.

4. From a command prompt (Windows) or terminal (Linux/OS X), run the following command,
which performs an ADDP discovery.

java -jar AddpLibrary.jar

Discovered devices are listed in a table, such as the one below:

MAC Address | IP Address | Hardware

==

00:40:9D:5C:11:12 | 192.168.1.2 | Wireless Vehicle Bus Adapter

Search complete. 1 device(s) found.

https://dl.bintray.com/digidotcom/maven/com/digi/addp/addplib/1.0/addplib-1.0.jar

Step 1: Build a shell Android Project with the WVA library Build and run the application

WVA Android Library Tutorial 16

5. For more verbose output, which displays all information for each device, add the -v argument:

java -jar AddpLibrary.jar -v

Using ADDP from an Android application
Digi’s ADDP library is packaged for distribution via JCenter like the WVA Android library. To include the
library as a dependency for your application, add the following line to the dependencies section of your
build.gradle file:

compile "com.digi.addp:addplib:1.0"

To perform a discovery, first instantiate an AddpClient object, and then call searchForDevicesAsync.
See the following code snippet:

AddpClient client = new AddpClient();
client.searchForDevicesAsync(new DeviceFoundListener() {

@Override
public void onFound(String mac, AddpDevice device) {

// Handle discovered device
}

@Override
public void onSearchComplete() {

// Handle completed search.
}

});

Using this example, you can populate a ListViewwith a representation of each discovered device. If
you plan to do this, be aware that this listener is invoked from a background thread. To change
anything in your application’s UI, you must pass the discovery information to the UI thread in some
way.
For more information on this library’s operations, see the Javadoc, available from the WVA
Documentation page.

Build and run the application
Your application is now complete. Run it using the play button in the IDE. If properly configured on the
same network as your WVA your application should look as follows:

Note If you receive an error related to the getWVA method in the build output, make sure the
capitalization matches that of the generatedmethod. For example, getWva versus getWVA.

http://www.digi.com/products/xbee-rf-solutions/boxed-rf-modems-adapters/wireless-vehicle-bus-adapter#productsupport
http://www.digi.com/products/xbee-rf-solutions/boxed-rf-modems-adapters/wireless-vehicle-bus-adapter#productsupport

Step 1: Build a shell Android Project with the WVA library Build and run the application

WVA Android Library Tutorial 17

Where can I find the completed source?
To check your work against the completed project, you can retrieve the entire project from the Git
tutorial repository as specified in the Getting Started section and run the following command:

git checkout step1

Step 2: Synchronize time to the WVA

This section shows you how to add a time synchronization call to the simple application you have
created so far. You can do so by adding a button to the activity created in Step 1: Build a shell Android
Project with the WVA library, which uses the current time of your Android device to change the time of
the WVA.
Your application needs to periodically synchronize the WVA clock.

Where do I begin?
Start with the project you created in Step 1: Build a shell Android Project with the WVA library, or begin
here by performing the following command in the companion repository and using the project
provided.

git checkout step1

Follow the steps below to complete the process:
1. Add UI elements

2. Create the button behavior

3. Build and run the application

Add UI elements
1. In the Project browser, navigate to and open app > src > main > res > layout > activity_

wva.xml.

2. Add the following XML element to create the button that will trigger time synchronization:

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Set Time"

android:id="@+id/set_time_button"

android:layout_below="@+id/connection_status_text"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="50dp" />

WVA Android Library Tutorial 18

Step 2: Synchronize time to the WVA Create the button behavior

WVA Android Library Tutorial 19

3. (Optional) If you would like a clock to be displayed within the application, add the following XML
code:

<DigitalClock

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/digitalClock"

android:layout_alignTop="@+id/set_time_button"

android:layout_toRightOf="@+id/set_time_button"

android:layout_toEndOf="@+id/set_time_button" />

4. See Create the button behavior for the next step.

Create the button behavior
1. Navigate to and open the code for the WVAActivity class you’ve been creating.

2. In the onCreate method, retrieve the button view created previously by adding:

final Button time_button = (Button) findViewById(R.id.set_time_button);

3. Define what you want to occur when the time button is clicked. At the top level of the
WVAActivity class, create a new private void method called time_button_clicked, as follows.
This function will look familiar, as all of the asynchronous calls in the WVA library follow the
same form and setTime is no different. All that the library needs is a Joda DateTime object
containing the time to set and a WvaCallback object for reporting status. A more complicated
application would do something more useful with the success or failure of the call.

private void time_button_clicked(WVAApplication wvaapp) {

WVA wva = wvaapp.getWVA();

DateTime now = new DateTime();

wva.setTime(now, new WvaCallback<DateTime>() {

@Override

public void onResponse(Throwable error, DateTime dateTime) {

if (error != null) {

error.printStackTrace();

}

}

});

}

Step 2: Synchronize time to the WVA Build and run the application

WVA Android Library Tutorial 20

4. Arrange for the function just created to be called when the button is clicked by adding the
following code at the end of onCreate.

time_button.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

time_button_clicked(wvaapp);

}

});

5. See Build and run the application for the next step.

Build and run the application
It may be necessary to clean up the imports of new symbols added during the steps in this process.
However, once this has been done, the application should build and run on your device. When the Set
Time button is pressed you can use the Web interface of the WVA to observe the time change. Try
changing your Android time and observe as the time changes.

Where can I find the completed source?
If you would like to check your work against the completed project, you can retrieve the entire project
from the Git tutorial repository as specified in the Getting Started section, and run the following
command:

git checkout step2

Step 3: Read vehicle data from the WVA

This section shows you how to add a vehicle data query call to the simple application you have created
so far. You can do so by adding a button to the activity created previously which fetches a vehicle data
point from the WVA device.

Note If your application requires periodic updates of vehicle data, see Step 5: Subscribe to vehicle
data on the WVA, which configures the WVA to provide data directly to your application rather than
polling the WVA’s web services.

Where do I begin?
You can start with the project you worked on in Step 2: Synchronize time to the WVA, or begin here by
performing the following command in the companion repository and using the project provided.

git checkout step2

Follow the steps below to complete the process:
1. Add UI elements

2. Create button behavior

3. Build and run the application

Add UI elements
1. In the Project browser, navigate to and open app > src > main > res > layout > activity_

wva.xml.

2. Add the following XML element to create the button that will trigger a vehicle data query:

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Fetch EngineSpeed"

android:id="@+id/fetch_data_button"

android:layout_below="@+id/set_time_button"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="50dp" />

WVA Android Library Tutorial 21

Step 3: Read vehicle data from the WVA Create button behavior

WVA Android Library Tutorial 22

3. Add the following XML so that you can display the fetched value inside the application:

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/vehicle_data_value"

android:layout_alignTop="@+id/fetch_data_button"

android:layout_toRightOf="@+id/fetch_data_button"

android:layout_toEndOf="@+id/fetch_data_button" />

4. See Create button behavior for the next step.

Create button behavior
1. Navigate to and open the code for the WVAActivity class you’ve been creating.

2. In the onCreate method, retrieve the button view created previously by adding:

final Button data_button = (Button) findViewById(R.id.fetch_data_button);

3. Define what should occur when this button is clicked. At the top level of the WVAActivity class
create a new private void method called data_button_clicked as follows.

private void data_button_clicked(WVAApplication wvaapp) {

WVA wva = wvaapp.getWVA();

String endpoint = "EngineSpeed";

final TextView value_view = (TextView) findViewById(R.id.vehicle_data_

value);

wva.fetchVehicleData(endpoint, new WvaCallback<VehicleDataResponse>() {

@Override

public void onResponse(Throwable error, VehicleDataResponse

response) {

if (error != null) {

error.printStackTrace();

} else {

value_view.setText(Double.toString(response.getValue()));

}

}

});

}

4. Define a String to indicate which vehicle data endpoint to query (in this case, EngineSpeed),
and a WvaCallback object for reporting the response. To display the timestamp of the fetched

Step 3: Read vehicle data from the WVA Build and run the application

WVA Android Library Tutorial 23

value, change the setText call to the following:

value_view.setText(String.format("%.3f\n%s",

response.getValue(),

response.getTime().toString()));

5. Add the following code at the end of onCreate. This calls the previously created function when
the button is clicked.

data_button.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

data_button_clicked(wvaapp);

}

});

6. See Build and run the application for the next step.

Build and run the application
It may be necessary to clean up the imports of new symbols added during this process. You can use
Android Studio’s Optimize imports function to do this (from the menu bar Code > Optimize
Imports... or type CTRL+ALT+O). Once this has been done, the application should build and run on
your device. When the Fetch EngineSpeed button is pressed, you should see that value appear on the
screen.

Step 3: Read vehicle data from the WVA Build and run the application

WVA Android Library Tutorial 24

Where can I find the completed source?
To check your work against the completed project, retrieve the entire project from the Git tutorial
repository as specified in the Getting started section and run the following command:

git checkout step3

Step 4: Configure the WVA

This section shows how to add a configuration call to the simple application you have created so far.
You will add two buttons to the activity created previously, which enable and disable the HTTP web
server, respectively.

Where do I begin?
Start with the project you worked on in Step 3: Read vehicle data from the WVA, or enter the following
command in the companion repository and use the project provided.

git checkout step3

Follow the steps below to complete the process:
1. Add UI elements

2. Create button behavior

3. Build and run the application

Add UI elements
1. Navigate to and open app > src > main > res > layout > activity_wva.xml in the Project

browser.

2. Add the following XML element to create the button that will enable the WVA’s HTTP web
server.

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Enable HTTP"

android:id="@+id/enable_http_button"

android:layout_below="@+id/fetch_data_button"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="50dp" />

WVA Android Library Tutorial 25

Step 4: Configure the WVA Create button behavior

WVA Android Library Tutorial 26

3. Add the following XML element to create the button that will disable the WVA’s HTTP web
server.

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Disable HTTP"

android:id="@+id/disable_http_button"

android:layout_alignTop="@+id/enable_http_button"

android:layout_toRightOf="@+id/enable_http_button"

android:layout_toEndOf="@+id/enable_http_button" />

4. See Create button behavior for the next step.

Create button behavior
1. Navigate to and open the code for the WVAActivity class you’ve been creating.

2. In the onCreate method, retrieve the button views created previously by adding the following:

final Button enable_http_button = (Button) findViewById(R.id.enable_http_

button);

final Button disable_http_button = (Button) findViewById(R.id.disable_http_

button);

Step 4: Configure the WVA Create button behavior

WVA Android Library Tutorial 27

3. Define what should occur when these buttons are clicked. At the top level of the WVAActivity
class, create a new private void method called enable_http_clicked as follows:

private void enable_http_clicked(WVAApplication wvaapp) {

WVA wva = wvaapp.getWVA();

JSONObject json = new JSONObject();

try {

json.put("enable", "on");

json.put("port", 80);

} catch (JSONException e) {

// Unexpected error

e.printStackTrace();

return;

}

wva.configure("http", json, new WvaCallback<Void>() {

public void onResponse(Throwable error, Void response) {

if (error != null) {

error.printStackTrace();

} else {

Toast.makeText(getApplicationContext(), "Enabled HTTP

server", Toast.LENGTH_SHORT).show();

}

}

});

}

The wva.configure method call takes a configuration web services path, a JSON object to be
sent, and a WvaCallback for reporting the success or failure of the call. In this case, you are
configuring the HTTP web server, and so you pass inhttp”. This translates into a request on
the web service endpoint /ws/config/http.

If you are familiar with the WVA’s web services, you might notice that the JSON object you
created is not the complete JSON object that you need to send to the WVA. What you passed to
the configure call still needs to be wrapped in another JSON object, as the value for the http
key. To make the library easier to use, the configure method wraps the given JSON object with
the path provided in the first argument. This will work with nearly any path, for example: http,
canbus/1config/interface/wlan0, /ws/config/http, http://192.168.100.1/ws/config/idigi.
The library does the correct thing with all of these paths.

Step 4: Configure the WVA Create button behavior

WVA Android Library Tutorial 28

In addition, create a new disable_http_clicked method as follows:

private void disable_http_clicked(WVAApplication wvaapp) {

WVA wva = wvaapp.getWVA();

JSONObject json = new JSONObject();

try {

json.put("enable", "off");

json.put("port", 80);

} catch (JSONException e) {

// Unexpected error

e.printStackTrace();

return;

}

wva.configure("http", json, new WvaCallback<Void>() {

@Override

public void onResponse(Throwable error, Void response) {

if (error != null) {

error.printStackTrace();

} else {

Toast.makeText(getApplicationContext(), "Disabled HTTP

server", Toast.LENGTH_SHORT).show();

}

}

});

}

Step 4: Configure the WVA Build and run the application

WVA Android Library Tutorial 29

4. Add the following code at the end of onCreate to call the newly created functions when either
button is clicked. You can use a single OnClickListenerwhich calls the correct function based
on the button’s ID.

View.OnClickListener httpClick = new View.OnClickListener() {

@Override

public void onClick(View view) {

switch (view.getId()) {

case R.id.enable_http_button:

enable_http_clicked(wvaapp);

break;

case R.id.disable_http_button:

disable_http_clicked(wvaapp);

break;

}

}

};

enable_http_button.setOnClickListener(httpClick);

disable_http_button.setOnClickListener(httpClick);

5. See Build and run the application for the next step.

Build and run the application
You might need to clean up the imports of new symbols added during this process. To do this, use
Android Studio’s Optimize imports function (from the menu bar Code > Optimize Imports..., or type
CTRL+ALT+O).
Once you have cleaned up the imports, build and run the application on your device. When you press
the Enable HTTP button, you should be able to use the web interface of the WVA to observe that the
HTTP web server has been enabled. Try navigating to http://<WVA IP>, or check the Network
Services configuration. When you press the Disable HTTP, you should similarly be able to observe that
the HTTP web server is disabled.

Step 4: Configure the WVA Build and run the application

WVA Android Library Tutorial 30

Note There is no automatic mechanism to switch use of HTTP or HTTPS in applications based on
changes in the WVA's configuration settings. Make sure your application's use of HTTP/HTTPS
matches the WVA's configuration settings for HTTP and HTTPS as network services. In the WVA's web
interface, go to Configuration > Network Services and check the following settings: Enable Web
Server (HTTP) and Enable Secure Web Server (HTTPS), including the port numbers assigned for
each service.

The following are indicators that there is a mismatch between the application code and the WVA's
Network Services settings for HTTP/HTTPS:

n If HTTP is disabled and you attempt to use it
o A redirect from HTTP to HTTPS occurs; that is, entering http:// is redirected to https://.

o On certain library calls, an error is issued with the message Unexpected response body.
This error is caused by the redirect from http:// to https://

n If HTTPS is disabled and you attempt to use it, a connection-error or ECONNREFUSEDmessage
is issued.

If both HTTP and HTTPS are disabled you can enable them in two ways:
n Use Device Cloud to reconfigure HTTP and HTTPS settings. From the Device Management

device list, double-click the device to display the device properties menu. The settings are Web
user interface (HTTP) andWeb user interface, secure (HTTPS).

n Reset the device to factory defaults by pressing and holding the WVA's button for ten seconds.

Where can I find the completed source?
To check your work against the completed project, you can retrieve the entire project from the Git
tutorial repository as specified in the Getting Started section, and then run the following command:

git checkout step4

Step 5: Subscribe to vehicle data on the WVA

This section shows you how to use the WVA Android library to subscribe to vehicle data from the WVA.
You can update the application to automatically connect to the WVA’s event channel, add a button that
sends the subscription request, and learn how to automatically receive new values coming in from the
WVA device.

Where do I begin?
You can start with the project you worked on in Step 4: Configure the WVA, or begin here by
performing the following command in the companion repository and using the project provided.

git checkout step4

Follow the steps below to complete the process:
1. Add UI elements

2. Create button behavior

3. Build and run the application

Add UI elements
1. Navigate to and open app > src > main > res > layout > activity_wva.xml in the Project

browser.

2. Add the following XML element to create a button that creates a subscription to vehicle data.

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Subscribe"

android:id="@+id/subscribe_button"

android:layout_below="@+id/enable_http_button"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="50dp" />

WVA Android Library Tutorial 31

Step 5: Subscribe to vehicle data on the WVA Add UI elements

WVA Android Library Tutorial 32

3. Add the following XML so that you can display the newest value inside the application.

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/engine_speed_value"

android:layout_alignTop="@+id/subscribe_button"

android:layout_toRightOf="@+id/subscribe_button"

android:layout_toEndOf="@+id/subscribe_button" />

4. See Create button behavior for the next step.

Step 5: Subscribe to vehicle data on the WVA Create button behavior

WVA Android Library Tutorial 33

Create button behavior
1. Navigate to and open the code for the WVAApplication class you’ve been creating.

2. In the onCreate method, set up a new EventChannelStateListener and pass it to the WVA
object. This listener is called to report various states of the event channel connection. This
code makes it so that a toast notification appears on screen whenever the connection state
changes.

wva.setEventChannelStateListener(new EventChannelStateListener() {

@Override

public void onConnected(WVA device) {

Toast.makeText(getApplicationContext(), "Event channel connected!",

Toast.LENGTH_SHORT).show();

}

@Override

public void onError(WVA device, IOException error) {

error.printStackTrace();

Toast.makeText(getApplicationContext(), "Event channel error: " +

error.getMessage(), Toast.LENGTH_LONG).show();

// If there is an unexpected error, disconnect from the event

channel.

device.disconnectEventChannel(true);

}

@Override

public void onRemoteClose(WVA device, int port) {

Toast.makeText(getApplicationContext(), "Event channel closed on

remote side. Reconnecting...", Toast.LENGTH_SHORT).show();

// Automatically reconnect after 15 seconds.

this.reconnectAfter(device, 15000, port);

}

@Override

public void onFailedConnection(WVA device, int port) {

Toast.makeText(getApplicationContext(), "Couldn’t connect event

channel", Toast.LENGTH_SHORT).show();

}

});

Step 5: Subscribe to vehicle data on the WVA Create button behavior

WVA Android Library Tutorial 34

3. In the onCreate method, below the code just added, call the WVA object’s
connectEventChannel method as follows. This call directs the library to open a TCP
connection with the WVA, on port 5000.

wva.connectEventChannel(5000);

4. Navigate to and open the code for the WVAActivity class you have been creating.

5. In the onCreate method, retrieve the previously created views by adding:

final Button subscribe_button = (Button) findViewById(R.id.subscribe_

button);

final TextView engine_speed_value = (TextView) findViewById(R.id.engine_

speed_value);

6. In the onCreate method, arrange for the displayed value to be updated each time a new value
arrives via the event channel. Do this by setting up a VehicleDataListener:

wvaapp.getWVA().setVehicleDataListener("EngineSpeed", new

VehicleDataListener() {

@Override

public void onEvent(VehicleDataEvent event) {

VehicleDataResponse response = event.getResponse();

engine_speed_value.setText(String.format("EngineSpeed = %.3f\n%s",

response.getValue(), response.getTime().toString()));

}

});

Step 5: Subscribe to vehicle data on the WVA Build and run the application

WVA Android Library Tutorial 35

7. At the top level of the WVAActivity class, create a new private void method called subscribe_
to_engine_speed as follows:

private void subscribe_to_engine_speed(WVAApplication wvaapp) {

WVA wva = wvaapp.getWVA();

wva.subscribeToVehicleData("EngineSpeed", 15, new WvaCallback<Void>() {

@Override

public void onResponse(Throwable error, Void response) {

if (error != null) {

error.printStackTrace();

} else {

Toast.makeText(getApplicationContext(), "Subscribed to

EngineSpeed", Toast.LENGTH_SHORT).show();

}

}

});

}

8. Add the following code at the end of onCreate to call the function you just created when the
Subscribe button is clicked.

subscribe_button.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

subscribe_to_engine_speed(wvaapp);

}

});

9. See Build and run the application for the next step.

Build and run the application
It may be necessary to clean up the imports of new symbols added during this process. You can use
Android Studio’s Optimize imports function to do this (from the menu bar Code > Optimize
Imports... or type CTRL+ALT+O).
Once this has been done, the application should build and run on your device. When the Subscribe
button is pressed you should start seeing new values for EngineSpeed vehicle data arrive to your
application every 15 seconds.

Note If you have previously set up an EngineSpeed subscription on your WVA, then you automatically
see data in the application without needing to press the Subscribe button.

Step 5: Subscribe to vehicle data on the WVA Build and run the application

WVA Android Library Tutorial 36

You may wish to override the onStop or onDestroymethod inWVAActivity to remove the
EngineSpeed data listener. This is particularly important in cases where there are references that
may keep objects from being garbage collected, such as the Activity being stopped. To remove the
listener, call removeVehicleDataListener as follows:

@Override
protected void onDestroy() {

super.onDestroy();

WVAApplication app = (WVAApplication) getApplication();
app.getWVA().removeVehicleDataListener("EngineSpeed");

}

Where can I find the completed source?
To check your work against the completed project, retrieve the entire project from the Git tutorial
repository as specified in Getting started and run the following command:

git checkout step5

Step 6: Create an alarm on vehicle data

This section shows how to use the WVA Android library to create a vehicle data alarm on the WVA. You
will update the application to automatically create a vehicle data alarm record, add a text view to
display alarm values, and learn how to distinguish subscription and alarm events.

Where do I begin?
Start with the project you worked on in Step 5: Subscribe to vehicle data on the WVA, or enter the
following command in the companion repository and use the project provided.

git checkout step5

Follow the steps below to complete the process:
1. Add UI elements

2. Create the alarm and handle alarm data

3. Build and run the application

Add UI elements
1. In the Project browser, navigate to and open app > src > main > res > layout > activity_

wva.xml.

2. Add the following XML element to create the text view for displaying the alarm values:

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/engine_speed_alarm_value"

android:layout_below="@+id/subscribe_button"

android:layout_alignParentLeft="true"

android:layout_alignParentStart="true"

android:layout_marginTop="50dp" />

3. See Create the alarm and handle alarm data for the next step.

Create the alarm and handle alarm data
1. Navigate to and open the code for the WVAActivity class you’ve been creating. In the onCreate

method, retrieve the text view created previously by adding:

WVA Android Library Tutorial 37

Step 6: Create an alarm on vehicle data Create the alarm and handle alarm data

WVA Android Library Tutorial 38

final TextView engine_speed_alarm_value = (TextView) findViewById

(R.id.engine_speed_alarm_value);

In the onCreate method, arrange for the displayed value to be updated each time a new value
arrives via the event channel. Do this by editing the VehicleDataListener created in Step 5:
Subscribe to vehicle data on the WVA. Here you can see that you may use the getType method
of an event to determine if a newly arrived event indicates new subscription or alarm data.
Note that since this listener needs access to the engine_speed_alarm_value variable, you
should place the declaration for engine_speed_alarm_value next to engine_speed_value.

wvaapp.getWVA().setVehicleDataListener("EngineSpeed", new

VehicleDataListener() {

@Override

public void onEvent(VehicleDataEvent event) {

VehicleDataResponse response = event.getResponse();

if (event.getType() == EventFactory.Type.SUBSCRIPTION) {

engine_speed_value.setText(

String.format("EngineSpeed = %.3f\n%s",

response.getValue(),

response.getTime().toString()));

}

else if (event.getType() == EventFactory.Type.ALARM) {

engine_speed_alarm_value.setText(

String.format("EngineSpeed (Alarm) = %.3f\n%s",

response.getValue(),

response.getTime().toString()));

}

}

});

Step 6: Create an alarm on vehicle data Build and run the application

WVA Android Library Tutorial 39

2. Add the following code at the end of onCreate to create an alarm on EngineSpeed values. This
code creates a new data alarm record which will generate an alarm event on the TCP event
channel when EngineSpeed is above 1000. The 10 argument directs the WVA to report this
alarm condition at most once every ten seconds.

wvaapp.getWVA().createVehicleDataAlarm("EngineSpeed", AlarmType.ABOVE,

1000, 10, new WvaCallback<Void>() {

@Override

public void onResponse(Throwable error, Void response) {

if (error != null) {

error.printStackTrace();

} else {

Toast.makeText(getApplicationContext(),

"Created alarm on EngineSpeed",

Toast.LENGTH_SHORT)

.show();

}

}

});

3. See Build and run the application for the next step.

Build and run the application
It may be necessary to clean up the imports of new symbols added during this process. You can use
Android Studio’s Optimize imports function to do this (from the menu bar Code > Optimize
Imports... or type CTRL+ALT+O).
Once you have cleaned up the imports, the application should build and run on your device. When the
application starts up, you should see a toast notification indicating that the alarm has been created.
Next, you should start seeing new EngineSpeed alarm values appear, below the Subscribe button.
You will only see new values if the EngineSpeed value detected by your WVA is above 1000. Therefore,
you may need to adjust your simulator (if you are using one), or change the threshold value passed
into the createVehicleDataAlarm call before you will see data.

Step 6: Create an alarm on vehicle data Build and run the application

WVA Android Library Tutorial 40

Where can I find the completed source?
To check your work against the completed project, retrieve the entire project from the Git tutorial
repository as specified in the Getting Started section, and then run the following command:

git checkout step6

	WVA Android Library Tutorial
	What is the WVA library?
	Options for using this tutorial and library

	Getting started
	Install tools and import the WVA tutorial
	Step 1: Install Java and Git
	Step 2: Install Android Studio
	Step 3: Get the WVA tutorial repository
	Step 4: Import the WVA tutorial into Android Studio

	Step 1: Build a shell Android Project with the WVA library
	Create the Android project
	Add the WVA library dependency
	Create resources for use in your application
	Add code to connect to the WVA
	Discover devices using ADDP

	Build and run the application
	Where can I find the completed source?

	Step 2: Synchronize time to the WVA
	Where do I begin?
	Add UI elements
	Create the button behavior
	Build and run the application
	Where can I find the completed source?

	Step 3: Read vehicle data from the WVA
	Where do I begin?
	Add UI elements
	Create button behavior
	Build and run the application
	Where can I find the completed source?

	Step 4: Configure the WVA
	Where do I begin?
	Add UI elements
	Create button behavior
	Build and run the application
	Where can I find the completed source?

	Step 5: Subscribe to vehicle data on the WVA
	Where do I begin?
	Add UI elements
	Create button behavior
	Build and run the application
	Where can I find the completed source?

	Step 6: Create an alarm on vehicle data
	Where do I begin?
	Add UI elements
	Create the alarm and handle alarm data
	Build and run the application
	Where can I find the completed source?

